sin的n次方定积分归纳

若n为奇数,则用d(cosx)凑微分,被积函数可化为关于cosx的函数,若n为偶数,则被积函数为((sinx)^2)^(n/2),用倍角公式(sinx)^2=(1-cos2x)/2以及积化和差公式化成几项相加的形式,然后逐项积分.

=(n-1)/n*(n-3)/(n-2)*…*4/5*2/3,当n为奇数; =(n-1)/n*(n-3)/(n-2)*…*3/4*1/2*π/2,当n为偶数 cosx积分就是sinx,sinx积分就是-cosx,一点点算就能算出来

解:原7a686964616fe58685e5aeb931333431373332式=-∫[(sinx)^(n-1)]d(cosx)=-[(sinx)^(n-1)]cosx+∫cosxd[(sinx)^(n-1)]=-[(sinx)^(n-1)]cosx+(n-1)∫cosx[(sinx)^(n-2)]dx=-[(sinx)^(n-1)]cosx+(n-1)∫(1-sinx)[(sinx)^(n-2)]dx=-[(sinx)^(n-1)]cosx+(n-1)∫[(

∫sin^naxdx=-(1/na)sin^(n-1)axcosax+[(n-1)/n]∫sin^(n-1)axdx(n为正整数)

归约公式(Reduction Formula)

In=∫(0,π/2)[cos(x)]^ndx=∫(0,π/2)[sin(x)]^ndx =(n-1)/n*(n-3)/(n-2)*… =(n-1)/n*(n-3)/(n-2)*…*3/4*1/2*π/2,n为偶数

首先做一点简化: ∫ [从0到π]x*(sinx)^ndx= ∫ [从0到π/2]x*(sinx)^ndx+∫ [从π/2到π]x*(sinx)^ndx 其中在计算∫ [从π/2到π]x*(sinx)^ndx的时候可以令t=π-x 则∫ [从π/2到π]x*(sinx)^ndx=∫ [从π/2到0](π-x)*(sin(π-x))^nd(π-x) =∫ [从0到π/2](π-t)*(sint)^ndt=∫ [从0到π/

亲,看看是不是这个,找了老久了,书上的例题呢

对于0到pi/2的积分是:分子(n-1)乘(n-3).一直乘到2 分子(n)乘(n-2).一直乘到1

相关文档

sin的n次方的定积分公式
三角函数积分公式
点火公式
sinx的n次方递推公式
微积分公式
华里士公式
沃利斯公式
三角函数高次定积分
电脑版